Темная материя и темная энергия. Темная энергия во вселенной Темное вещество и темная энергия

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Доктор физико-математических наук И. Ройзен

Несколько лет назад астрофизики обнаружили интригующий факт. Результаты наблюдений за далекими сверхновыми звездами показали, что Вселенная расширяется заметно быстрее, чем ей "предписывает" общепринятая теория: ее как бы "распирает" некая сила, о природе которой почти ничего неизвестно. Предполагается только, что она представляет собой остатки некоего поля, существовавшего в первые мгновения жизни Вселенной, которых, однако, хватает, чтобы повлиять на ее дальнейшую судьбу. Статья написана по материалам работы Э. Линдера, профессора Национальной лаборатории им. Лоуренса и Космологического центра при Флоридском университете, опубликованной в журнале "CERN COURIER" в сентябре 2003 года.

Туманность "Паруса" - остатки взрыва сверхновой.

Снимки наиболее удаленной сверхновой, сделанные космическим телескопом Хаббл.

Схематическое изображение возможных решений уравнений общей теории относительности с отличной от нуля вакуумной энергией (космологической константой), сопоставленное с данными наблюдений сверхновых звезд, реликтового излучения и скоплений галактик.

Уже полученные результаты (с вертикальными отрезками, отвечающими экспериментальным ошибкам) и ожидаемые (красные точки) от будущих наблюдений за сверхновыми с бoльшими значениями красного смещения (или величины z).

Основные элементы орбитальной лаборатории SNAP (Supernova/Acceleration Probe).

Пространственная структура реликтового излучения, заполняющего Вселенную.

Недавно была сформулирована новая версия стандартной космологической модели Вселенной, названная "космическим согласием" ("cosmic concordance"). Она описывает широкий круг явлений в рамках теперь уже надежно обоснованной модели горячей Вселенной, ведущей начало с так называемого Большого взрыва (см. "Наука и жизнь" №№ 11, 12, 1996 г.). Согласно этой версии, вся материя состоит из трех основных компонент: барионной (в основном это нуклоны и гипероны), которую описывает общепринятая модель элементарных частиц; небарионной темной материи, предположительно представленной либо неизвестными еще почти невзаимодействующими массивными частицами, либо гипотетическими аксионами - очень легкими и тоже очень слабо связанными с барионами частицами с нулевым спином, существование которых также не противоречит основам современной квантовой теории; и, наконец, - в этом как раз и состоит довольно неожиданный сюрприз - темной энергии, относительно физической природы которой мы практически еще ничего не знаем. При этом на долю барионов приходится всего лишь около 4% всей массы (здесь масса М понимается в релятивистском смысле как M = E /c 2 , где E - полная энергия, а c - скорость света, причем обычно пользуются системой единиц, в которой c = 1). Часть барионов - тоже "темная", а точнее холодная, в том смысле, что не обнаруживает себя непосредственно светом раскаленных звезд. Темная материя составляет примерно 20-25% всей массы. Львиная же доля - 70-75% всей массы - приходится на темную энергию, которая пока обнаруживает себя только тем, что влияет на скорость глобального расширения Вселенной. Эта фоновая энергия распределена равномерно, во всяком случае, в пространственных масштабах, превышающих размеры всех известных неоднородностей (скажем, скоплений галактик).

Представление о темной энергии возникло в 1998 году и связано с наблюдениями за сверхновы ми звездами, которые время от времени ярко вспыхивают на небосклоне и затем довольно быстро тускнеют. Благодаря своим уникальным свойствам эти звезды используют в качестве маркеров для определения того, как космологические расстояния изменяются со временем. Так вот, в 1998 году две группы астрофизиков - одна в США, а другая в Австралии - почти одновременно обнаружили, что самые далекие сверхновые светят не так ярко, как это ожидалось, исходя из того, что Вселенная заполнена материей, гравитирующей по закону Ньютона, то есть обратно пропорционально квадрату расстояния. Это означало, что они расположены от нас дальше, чем должны были бы находиться, если бы Вселенная расширялась в поле обычных гравитационных сил. Таким образом, с достоверностью 99% можно утверждать, что во Вселенной должна быть еще какая-то дополнительная энергия, способная на космологических расстояниях противостоять гравитаци онному притяжению материи. Она и есть то, что стали понимать под словами "темная энергия".

С тех пор получено множество новых свидетельств в пользу данного утверждения - как в ходе дальнейших и более надежных наблюдений за сверхновыми, так и в результате ряда других исследований. Таковыми были, прежде всего, детальные измерения энергетического спектра реликтового излучения в наземных лабораториях и со спутников (см. "Наука и жизнь" № 1, 1993 г.). Эти же эксперименты показали, что Вселенная плоская (во всяком случае - почти), то есть ее видимая пространственная геометрия эвклидова, что согласуется с предсказанием инфляционной модели (см. "Наука и жизнь" № 8, 2002 г.). В то же время наблюдения за скоплениями галактик говорят о том, что обычная материя (барионная и темная) может обеспечить всего лишь 20-30% необходимой для этого средней плотности энергии. Таким образом, все сходится к тому, что около трех четвертей этой плотности следует отнести на счет темной энергии, которая и ускоряет расширение Вселенной.

О ПРИРОДЕ ТЕМНОЙ ЭНЕРГИИ

Откуда же все-таки берется эта темная энергия? Вразумительного ответа на этот вопрос пока нет, но обычно его пытаются найти, комбинируя уравнения общей теории относительности (ОТО) с уравнениями состояния вещества, о которых для начала поговорим вкратце.

Под уравнениями состояния вещества понимается взаимозависимость между плотностью полной энергии e и давлением p. Простейшим примером является уравнение Клапейрона для идеального газа p = 2/3 ke к = = 2/3 k (e - r), где k - постоянная Больцмана, e к - плотность кинетической энергии и r - плотность массы покоя.

В нерелятивистской среде (где величина массы намного превышает кинетическую энергию частиц) давление ничтожно мало по сравнению с плотностью полной энергии, так что в данном контексте его можно с очень хорошей точностью считать просто равным нулю. В релятивистской среде (когда, наоборот, кинетическая энергия намного больше массы покоя) плотность энергии всего лишь втрое больше давления, e = 3p . А в вакууме сумма e + p = 0, то есть они отличаются только знаком (иначе говоря, e/p = -1). Последнее прямо вытекает из того, что по самому своему смыслу вакуум должен быть релятивистски инвариантным, то есть выглядеть одинаково во всех системах координат, а упомянутое только что уравнение состояния - единственное, которое удовлетворяет этому требованию. На первый взгляд кажется, что в вакууме вообще "ничего нет", и, стало быть, просто e = p = = 0. Но такие "естественные" аргументы проходят только в рамках классической теории. Уже давно и хорошо известно, что плотность энергии квантового вакуума может отличаться от нуля и притом весьма значительно (примером тому служат неустранимые нулевые колебания).

Теперь обратимся к уравнениям ОТО. В них давление само "гравитирует", то есть в определенном смысле становится эквивалентным массе (энергии), и знак полного гравитационного взаимодействия определяется знаком суммы e + 3p . Если он положителен - а это, очевидно, так для любой среды, кроме вакуума, - имеет место хорошо знакомое нам притяжение. А вот в вакууме может быть что угодно: там e вак + p вак = 0, так что e вак + 3p вак = 2p вак, и все зависит от знака давления. Если p вак і 0 (и, значит, e вак Ј 0), то качественно мало что меняется: вакуум или не повлияет никак, или же добавит в "общий котел" некоторое дополнительное равномерно размазанное по Вселенной притяжение. Но если p вак < 0 (и, значит, e вак > 0), то вакуум привнесет в этот "общий котел" антигравитационную составляющую - отталкивание, что совсем небезобидно. Дело в том, что, будучи равномерно размазанной по всему пространству, она с ростом расстояния станет все сильнее подавлять притяжение "локализованной" материи и рано или поздно обязательно возобладает в суммарном вкладе по всему объему, обеспечив, таким образом, выталкивание (а не притяжение!) материи за его пределы!

По существу, именно это соображение положено в основу инфляционной модели, утверждающей, что в очень ранней Вселенной абсолютно доминировала огромная (положительная!) энергия вакуума, который по этой причине стремительно раздувался, а вещество появилось лишь позднее.

Формально такой режим можно смоделировать математически, введя в уравнения ОТО положительную космологическую константу. Вакуум ОТО с ненулевой космологической константой давно и детально изучен и известен под названием "мир де-Ситтера". Его свойства весьма интересны и во многом парадоксальны, но их обсуждение увело бы нас в сторону. Интересно, однако, то, что уравнения ОТО с положительной космологической константой, включающие в себя не только гравитацию, но и антигравитацию, могли бы на первый взгляд пролить свет если не на физический смысл, то хотя бы на определенную математическую интерпретацию темной энергии. Но тут мы оказываемся перед лицом почти неразрешимой проблемы.

Дело в том, что величина космологической константы, необходимая для объяснения наблюдаемых размеров Вселенной с помощью инфляционной модели, настолько велика, что сейчас темная энергия должна была бы превышать энергию, связанную с обычной материей, примерно на 120 порядков (то есть быть в 10 120 раз больше!). А между тем она, как уже упоминалось, хотя и больше, но все-таки имеет тот же порядок величины.

Конечно, в результате фазового перехода с перестройкой вакуума, который почти несомненно случился в ранней Вселенной, космологическая константа могла измениться (и наверняка изменилась), но все же пока совершенно непонятно, как и почему произошла столь "тонкая настройка", что она уменьшилась именно на 120 порядков, а не, скажем, в 10 или 100 раз. Правда, возможна и так называемая антропологическая позиция: если бы случилось иначе, то сейчас было бы некому задаваться подобными вопросами. Однако если не становиться на позицию фаталистов и не считать, что все сущее обязано воле случая, - одним словом, если не закапывать по-страусиному голову в песок, - то стоит все-таки поискать более содержательный ответ.

И его интенсивно ищут. Погоня за все новыми экспериментальными свидетельства ми присутствия темной энергии и попытки теоретически осмыслить их результаты превратились сегодня в целую космологическую индустрию, включающую самые разнообразные исследования по всему временному спектру от ранней до современной Вселенной.

Есть множество указаний на то, что уравнение состояния темной энергии менялось со временем, так что для воссоздания достаточно полной картины необходимо накопить информацию, относящуюся ко всем эпохам эволюции Вселенной. Иначе говоря, нужно "просканировать" уравнение ее состояния по соответствующим величинам красного смещения, которое возникает в результате эффекта Доплера. Они определяются пара метром z є (l 0 - l е)/l е, где l 0 - длина волны принимаемого излучения, l е - длина волны испускаемо го излучения, их получают непосредственно из наблюдений. Или, что то же самое, уравнение нужно исследовать по всем значениям величины (1 + z ) - относительному различию характерных пространственных масштабов Вселенной от ее "туманной юности", когда было 1/(1 + z ) << 1 и, значит, красное смещение z >> 1, до наших дней, когда 1/(1 + z ) = 1 (то есть z = 0). Таким образом, космологи получат информацию о замедлении расширения Вселенной вследствие притяжения материи и об его ускорении темной вакуумной энергией в различные исторические периоды подобно тому, как сведения об изменении климата на Земле черпают из наблюдений за шириной колец на спилах деревьев.

Здесь решающая роль отводится сверхновым звездам, видимая яркость которых позволяет довольно точно судить об их удаленности от нас и, значит, о моменте их взрыва, а красное смещение в спектрах - это не что иное, как соотношение размеров Вселенной сейчас и в то время. Взятые в совокупности, они дадут полное представление о характере эволюции Вселенной.

Второе направление перспективных исследований включает накопление данных о возрастании скорости формирования крупномасштабных структур во Вселенной типа скоплений галактик. И, наконец, третье направление - это выявление чрезвычайно малых пространственных флуктуаций темной энергии по сверхточному (прецизионному) измерению столь же мизерной анизотропии спектра реликтового излучения.

Возможности последних двух направлений серьезно ограничены естественными неопределенностями, неизбежно присущими астрофизике и космической статистике (в частности, тем, что в нашем распоряжении имеется, увы! - только одна Вселенная; хорошо известно, что эта "досадная недоработка природы" сильно сковывает руки и в исследовании ряда смежных вопросов). Как уже упоминалось выше, они тем не менее могут оказаться очень полезными для перекрестного сопоставления результатов.

В реализации всей этой грандиозной программы и состоит самая фундаментальная задача космологии на ближайшие годы. Дальнейшие исследования должны также ограничить произвол в выборе параметров различных теоретических моделей и предсказать более определенно судьбу нашей Вселенной, включая, быть может, и оценку времени, которое осталось до "Страшного космического суда" (на всякий случай - оно не может быть меньше многих миллиардов лет).

СЛОВАРИК К СТАТЬЕ

Барионы - элементарные частицы, обладающие (в отличие от всех других) так называемым барионным зарядом. Как показывает опыт, барионный заряд изолированной системы сохраняется точно или с очень высокой степенью точности, хотя причина этого неизвестна. Наиболее известные примеры барионов - протоны и нейтроны с барионным зарядом +1, а также соответствующие античастицы - антибарионы, барионный заряд которых равен -1.

Гипероны - "странные" барионы, иначе говоря - барионы, содержащие хотя бы один странный кварк.

Инфляционная модель - сценарий, в котором предполагается, что в первые мгновения своего существования Вселенная представляла собой "ложный вакуум" - метастабильное состояние без реальных частиц, которое не превратилось сразу же в реальный физический вакуум только потому, что для этого необходимо было преодолеть некоторый потенциальный барьер. Этот вакуум расширялся с огромной скоростью и, туннелируя через упомянутый барьер (напомним, что, в отличие от классической, квантовая механика этого не запрещает - пример тому спонтанное деление ядер и многие переходы в твердых телах), "сваливался" в реальный физический вакуум, энергия которого значительно ниже. В результате выделилась громадная энергия, произошел сильнейший разогрев, и во Вселенной появились реальные частицы (в соответствии с обычными законами термодинамики). С этого времени началось и происходит сейчас ее расширение (несравненно более медленное) и постепенное остывание (конечно, "в среднем"), как это качественно и предсказывает общепринятая модель горячей Вселенной.

Нулевые колебания - чисто квантовый эффект, означающий, что энергию частицы или поля нельзя понизить точно до нуля. В случае полей их энергия формально вообще бесконечна. Поскольку обычно всегда играют роль только разности энергий, эта энергия во всех расчетах сокращается. Однако в ОТО энергия приобретает абсолютный смысл.

Мир де-ситтера - так принято называть решения уравнений ОТО с космологической постоянной, которые описывают вакуумное состояние. Свойства последнего зависят от знака этой постоянной и сильно отличают его от "пустого вакуума".

Космологическая постоянная - величина, известная также под названием L-члена. Присутствие такого слагаемого в уравнениях ОТО ничем не запрещено, и вначале Эйнштейн считал его даже необходимым, так как без него стационарная Вселенная с одним только притяжением явно неустойчива. Когда же было найдено нестационарное решение ОТО (фридмановская расширяющаяся Вселенная) и тем более когда выяснилось, что именно оно отвечает реальности, необходимость в L-члене для внутренне непротиворечивого описания современной Вселенной, казалось бы, отпала. И вот теперь вопрос снова оказался на повестке дня.

Красное смещение - эффект Доплера, который состоит в том, что частота видимого света (и вообще принимаемых электромагнитных волн) зависит от относительной скорости излучателя и приемника: чем быстрее они удаляются друг от друга, тем она меньше. В горячей Вселенной относительные скорости всех тел (на космологических расстояниях) тем больше, чем дальше они одно от другого. В результате оказывается, что принимаемая нами частота уменьшается (по сравнению с частотой неподвижного источника) во столько же раз, во сколько раз масштабы Вселенной в момент излучения были меньше, чем сейчас. Этот фактор принято записывать в виде (1 + z ), потому что тогда z - это красное смещение, относительное удлинение электромагнит ной волны.

Масса покоя (она же и энергия покоя в системе единиц, где скорость света c = 1) - это масса (энергия) неподвижного тела; полная (релятивистская) масса (энергия) равна массе покоя + кинетическая энергия тела.

Физики любят красное словцо. В их среде с некоторых пор принято давать «ненаучные» названия вновь открытым сущностям. Взять хотя бы странный и очарованный кварки. Вот и темная энергия не синоним темных сил, а термин, придуманный для обозначения некоторых необычных свойств нашей Вселенной.

Открытие темной энергии было сделано астрономическими методами и стало для большинства физиков полной неожиданностью. Темная энергия, пожалуй, главная загадка современного естествознания. Вполне вероятно, что ее разгадка станет важнейшим событием физики XXI века, сравнимым по масштабу с крупнейшими открытиями недалекого прошлого, такими, как открытие феномена расширения Вселенной.

Не исключено даже, что произойдет настолько радикальное развитие теории, что оно встанет в один ряд с созданием общей теории относительности, открытием кривизны пространства-времени и связи этой кривизны с гравитационными силами. Мы сейчас находимся в начале пути, и разговор о темной энергии - это возможность заглянуть в «лабораторию» физиков в то время, когда их работа идет полным ходом.

Немного истории

То, что в нашей Вселенной «что-то не так», стало ясно космологам уже к началу 1990-х годов. Для пояснения полезно напомнить о законе расширения Вселенной. Удаленные друг от друга галактики разбегаются, причем чем дальше галактика, тем быстрее она удаляется от нас. Количественно темп расширения характеризуется параметром Хаббла. К началу 1990-х значение параметра Хаббла в современной Вселенной было довольно хорошо измерено: темп расширения Вселенной сегодня таков, что галактики, удаленные от Земли на расстояние 1 млрд. световых лет, убегают от нас со скоростью 24 тыс. км/с.

Отметим, что параметр Хаббла зависит от времени: в далеком прошлом Вселенная расширялась гораздо быстрее, чем сейчас, и, соответственно, параметр Хаббла был гораздо больше.

В современной теории гравитации - общей теории относительности - параметр Хаббла однозначно связан с двумя другими характеристиками Вселенной: во-первых, с суммарной плотностью энергии всех форм материи, вакуума и т. д., во-вторых, с кривизной трехмерного пространства. Наше трехмерное пространство, вообще говоря, не обязано быть евклидовым; его геометрия может, например, быть аналогична геометрии сферы; сумма углов треугольника может не равняться 180°. В таком случае «упругость» пространства с точки зрения расширения Вселенной играет ту же роль, что и плотность энергии.

К началу 1990-х годов с неплохой точностью была оценена и плотность энергии «нормальной» материи в современной Вселенной. «Нормальная» она в том смысле, что испытывает такие же гравитационные взаимодействия, что и обычное вещество. Дело, впрочем, осложнилось тем, что большая часть «нормальной» материи - это так называемая темная материя. Темная материя, по-видимому, состоит из новых, не открытых пока в земных экспериментах элементарных частиц, чрезвычайно слабо взаимодействующих с веществом (слабее нейтрино!), но на равных испытывающих гравитационное взаимодействие. Именно по эффекту гравитационного притяжения она и была обнаружена. Более того, измерения гравитационных сил в скоплениях галактик позволили определить массу темной материи в них, а в конечном итоге - в целом во Вселенной. Таким образом и была найдена полная плотность энергии «нормальной» материи (для нее справедлива знаменитая формула Е = mс 2).

И что же оказалось? Выяснилось, что «нормальной» материи явно не хватает для объяснения измеренного темпа расширения Вселенной. Причем сильно не хватает: «недостача» составляла около 2/3 (по современным оценкам - около 70%). Возможных объяснений этому факту было два: либо трехмерное пространство искривлено, и недостающий вклад в параметр Хаббла связан с его «упругостью», либо во Вселенной присутствует новая форма энергии, которую впоследствии и стали называть «темной энергией».

С теоретической точки зрения обе эти возможности - и неевклидовость пространства, и темная энергия - выглядели крайне неправдоподобными.

Начнем с кривизны трехмерного пространства. В процессе расширения Вселенной пространство разглаживается, его кривизна уменьшается. Если кривизна отличается от нуля сейчас, то в прошлом она была больше, чем сегодня. Однако плотность энергии (массы) материи убывает при расширении Вселенной еще быстрее. Это означает, что в прошлом относительный вклад кривизны в параметр Хаббла был очень мал, а главным - с большим запасом - был вклад материи. Для того чтобы сегодня расширение Вселенной на 70% обеспечивалось кривизной, необходимо «подогнать» значение радиуса кривизны пространства в прошлом с фантастической точностью - через секунду после Большого взрыва он должен был быть равен миллиарду радиусов наблюдаемой тогда части Вселенной, не больше и не меньше! Без такой подгонки кривизна сегодня была бы либо на много порядков больше, либо на много порядков меньше, чем необходимо для объяснения наблюдений.

Эта проблема была одним из главных соображений, приведших к представлению об инфляционной стадии эволюции Вселенной. Согласно инфляционной теории, предложенной Алексеем Старобинским и независимо Аланом Гутом и сформировавшейся благодаря работам Андрея Линде, Андреаса Албрехта и Пола Стейнхардта, Вселенная на самом раннем этапе своей эволюции прошла через стадию чрезвычайно быстрого, экспоненциального расширения (раздувания, инфляции). По окончании этой стадии Вселенная разогрелась до очень высокой температуры, и наступила эпоха горячего Большого взрыва.

Хотя инфляционная стадия длилась, скорее всего, малую долю секунды, за это время Вселенная растянулась на десятки или сотни порядков величины (или гораздо больше) и кривизна пространства упала практически до нулевого значения. Таким образом, инфляционная теория приводит к предсказанию о том, что пространство современной Вселенной с высочайшей степенью точности евклидово. Это, конечно, идет вразрез с той гипотезой, что Вселенная расширяется сегодня на 70% благодаря кривизне.

Действие темной энергии подобно космологической инфляции первых мгновений Вселенной, только совсем других масштабов - ничтожная плотность энергии, медленное ускорение. Этот малый масштаб - большая загадка, совершенно непонятно, как темная энергия может быть связана с известной нам физикой частиц и полей. К этой загадке мы еще вернемся.

В дилемме, что отвечает за недостающие 70% плотности Вселенной - темная энергия или кривизна, - последняя долгое время была более популярной. Переворот произошел в 1998–1999 годах, когда две группы из США, одна под руководством Адама Райсса и Брайана Шмидта, а другая - Сола Перлмуттера, сообщили о результатах наблюдений удаленных сверхновых типа Iа. Из этих наблюдений следовало, что наша Вселенная расширяется с ускорением. Такое свойство вполне согласуется с представлением о темной энергии, в то время как кривизна пространства к ускоренному расширению не приводит.

Несколько слов о сверхновых типа Iа. Это белые карлики, которые, подпитываясь веществом от звезды-компаньона, достигли так называемого чандрасекаровского предела, после чего потеряли устойчивость, взорвались и коллапсировали в нейтронные звезды. Предел Чандрасекара для всех белых карликов один, сами белые карлики похожи друг на друга, поэтому и взрывы в определенном смысле одинаковы. Иными словами, сверхновые типа Iа представляют собой «стандартные свечи»: зная абсолютную светимость и измеряя видимую яркость (поток энергии, приходящий на Землю), можно определить расстояние до каждой из них. Одновременно можно установить и скорость удаления от нас каждой из сверхновых (используя эффект Доплера).

Сверхновые - очень яркие объекты, их видно на огромных расстояниях. Иначе говоря, удаленные сверхновые, которые мы наблюдаем сейчас, взорвались давным-давно, и поэтому скорость их убегания определялась темпом расширения Вселенной тогда, в далеком прошлом. Тем самым наблюдения сверхновых типа Iа позволяют определить темп расширения на сравнительно ранних этапах эволюции Вселенной (8 млрд. лет назад и даже несколько раньше) и проследить зависимость этого темпа от времени. Именно это и дало возможность установить, что Вселенная расширяется с ускорением.

Окончательное доказательство того, что кривизна трехмерного пространства Вселенной мала, было получено путем изучения карты реликтового излучения.

В эпоху излучения реликтовых фотонов Вселенная не была в точности однородной. Имевшиеся тогда неоднородности были зародышами структур - первых звезд, галактик, скоплений галактик. В то время неоднородности плазмы представляли собой звуковые волны. Важно, что в ту эпоху во Вселенной имелся характерный масштаб расстояний. Звуковые волны ольшой длиной и, соответственно, большим периодом, еще не успели развиться к эпохе излучения реликтовых фотонов, а волны с «правильной» длиной как раз успели попасть в фазу максимальной амплитуды. Эта «правильная» длина волны представляет собой «стандартную линейку» эпохи излучения реликтовых фотонов; ее размер надежно вычисляется в теории горячего Большого взрыва и проявляется на карте реликтового излучения .

На рубеже XX–XXI веков в экспериментах BOOMERanG и MAXIMA впервые был измерен угол, под которым видна обсуждавшаяся только что «стандартная линейка». Ясно, что этот угол зависит от геометрии пространства: если сумма углов треугольника превышает 180°, то и этот угол больше. В результате было выяснено, что наше трехмерное пространство с хорошей степенью точности евклидово. Последующие измерения подтвердили этот вывод. С точки зрения расширения Вселенной существующие результаты означают, что кривизна пространства вносит пренебрежимо малый вклад (менее 1%) в параметр Хаббла. Темп расширения Вселенной сейчас на 70% обусловлен именно темной энергией.

Больше не знают о ней ничего

Какие же свойства темной энергии известны на настоящее время? Таких свойств немного, всего три. Но то, что известно, может по справедливости вызвать изумление.

Первое - это тот факт, что в отличие от «нормальной» материи темная энергия не скучивается, не собирается в объекты типа галактик или их скоплений - она «разлита» по Вселенной равномерно. Это утверждение, как и любое, основанное на наблюдениях или экспериментах, справедливо с определенной точностью. Однако из наблюдений следует, что отклонения от однородности, если они и есть, должны быть весьма малы по величине.

О втором свойстве мы уже говорили: темная энергия заставляет Вселенную расширяться с ускорением. Этим темная энергия тоже разительно отличается от нормальной материи, которая тормозит расширение. Два описанных свойства свидетельствуют о том, что темная энергия в определенном смысле испытывает антигравитацию, для нее имеется гравитационное отталкивание вместо гравитационного притяжения. Области с повышенной плотностью нормальной материи за счет гравитационного притяжения собирают вещество из окружающего пространства, сами эти области сжимаются и образуют плотные сгустки. Для антигравитирующей субстанции всё наоборот: области с повышенной плотностью (если они есть) растягиваются из-за гравитационного отталкивания, неоднородности разглаживаются и никаких сгустков не образуется.

Третье свойство темной энергии состоит в том, что ее плотность не зависит от времени. Тоже удивительно: Вселенная расширяется, объем растет, а плотность энергии остается постоянной. Кажется, что здесь есть противоречие с законом сохранения энергии. За последние 8 млрд. лет Вселенная расширилась вдвое. Область пространства, которая тогда имела, скажем, размер 1 м, сегодня имеет размер 2 м, ее объем увеличился в 8 раз, во столько же раз увеличилась энергия в этом объеме. Несохранение энергии налицо.

На самом деле рост энергии при расширении Вселенной не противоречит законам физики. Темная энергия устроена так, что расширяющееся пространство совершает над ней работу, что и приводит к увеличению энергии этой субстанции в расширяющемся объеме пространства. Правда, расширение пространства само обусловлено темной энергией, так что ситуация напоминает барона Мюнхгаузена, вытаскивающего себя за волосы из болота. И тем не менее противоречия нет: в космологическом контексте невозможно ввести понятие полной энергии, включающей в себя энергию самого гравитационного поля. Так что и закона сохранения энергии, запрещающего рост или убывание энергии какой-нибудь формы материи, тоже нет.

Утверждение о постоянстве плотности темной энергии тоже основано на астрономических наблюдениях, а потому тоже справедливо с определенной точностью. Чтобы охарактеризовать эту точность, укажем, что за последние 8 млрд. лет плотность темной энергии изменилась не более чем в 1,1 раза. Это мы сегодня можем сказать с уверенностью.

Отметим, что второе и третье свойство темной энергии - способность приводить к ускоренному расширению Вселенной и ее постоянство во времени (или, более общо, очень медленная зависимость от времени) - на самом деле тесно связаны между собой. Такая связь следует из уравнений общей теории относительности. В рамках этой теории ускоренное расширение Вселенной происходит именно тогда, когда плотность энергии в ней или совсем не меняется, или меняется весьма медленно. Таким образом, антигравитация темной энергии и ее сложные отношения с законом сохранения энергии - две стороны одной медали.

Этим надежные сведения о темной энергии по существу и исчерпываются. Дальше начинается область гипотез. Прежде, чем говорить о них, обсудим вкратце один общий вопрос.

Почему сейчас?

Если в современной Вселенной темная энергия дает наибольший вклад в полную плотность энергии, то в прошлом это было далеко не так. Скажем, 8 млрд. лет назад нормальная материя была в 8 раз более плотной, а плотность темной энергии была такой же (или почти такой же), как сейчас. Отсюда несложно заключить, что тогда соотношение между энергией покоя нормальной материи и темной энергией было в пользу первой: темная энергия составляла около 13%, а не 70%, как сегодня. Из-за того, что в то время главную роль играла нормальная материя, расширение Вселенной происходило с замедлением. Еще раньше влияние темной энергии на расширение было совсем слабым.

Итак, влияние темной энергии и вызванное им ускорение расширения Вселенной - явления по космологическим меркам совсем недавние: ускорение началось «всего» 6,5 млрд. лет назад. С другой стороны, поскольку плотность нормальной материи убывает со временем, а плотность темной энергии - нет, темная энергия вскоре (опять-таки по космологическим меркам) будет полностью доминировать. Значит, современный этап космологической эволюции - это переходный период, когда темная энергия уже играет заметную роль, но расширение Вселенной определяется не только ей, но и нормальной материей. Является ли эта выделенность нашего времени случайным совпадением или за ней стоит какое-то глубокое свойство нашей Вселенной? Этот вопрос - «почему сейчас?» - остается пока открытым.

Кандидаты

Если бы не было гравитации, абсолютное значение энергии не имело бы физического смысла. Во всех теориях, описывающих природу, за исключением теории гравитационных взаимодействий, смысл имеет лишь разность энергий тех или иных состояний. Так, говоря об энергии связи атома водорода, мы имеем в виду разность двух величин: суммарной энергии покоя свободных протона и электрона, с одной стороны, и энергии покоя атома - с другой. Именно эта разность энергий выделяется (передается рожденному фотону), когда электрон и протон соединяются в атом. Если бы не гравитационное взаимодействие, говорить об энергии вакуума было бы бессмысленно, ее просто не с чем было бы сравнивать.

Дело в том, что энергия вакуума, как и любая другая энергия, «весит», гравитирует. Вакуум - это состояние с наинизшей энергией (поэтому, кстати, энергию от него отобрать нельзя), однако эта энергия совершенно не обязана быть равной нулю; с теоретической точки зрения она может быть как положительной, так и отрицательной. Можно ли ее вычислить «из первых принципов» - большой вопрос. Но в любом случае энергия вакуума, если она положительна, имеет как раз те свойства, которыми должна обладать темная энергия: однородность в пространстве и постоянство во времени.

Как мы говорили выше, в общей теории относительности последнее свойство автоматически означает, что энергия вакуума приводит к ускоренному расширению Вселенной.

Подчеркнем, что однородность в пространстве и постоянство во времени - это точные, а не приближенные свойства вакуума. Плотность энергии вакуума - это мировая константа (по крайней мере, в той части Вселенной, которую мы наблюдаем). Надо сказать, что эту константу - космологическую постоянную, Λ-член - вводил в свои уравнения еще Эйнштейн. Он, правда, не отождествлял ее с энергией вакуума, но это - вопрос терминологии, по крайней мере, при современном понимании существа дела. Позже Эйнштейн от своей идеи отказался - возможно, напрасно.

Почему же представление о темной энергии как энергии вакуума не удовлетворяет многих физиков? В первую очередь это связано с несуразно малым значением плотности энергии вакуума, которое необходимо для согласия теории и наблюдений.

В вакууме всё время рождаются и умирают виртуальные частицы, в нем имеются конденсаты полей - вакуум похож скорее на сложную среду, чем на абсолютную пустоту. Это не просто домыслы: особенности вакуума находят свое проявление в свойствах элементарных частиц и их взаимодействий и в конечном итоге определяются, хотя и косвенно, из многочисленных экспериментов. Энергия вакуума, в принципе, должна была бы «знать» о том, как он устроен, какова его структура и каковы значения характеризующих его параметров (например, конденсатов полей).

Теперь представим себе ангела-теоретика, который изучил физику элементарных частиц, но ничего не слышал о нашей Вселенной. Попросим этого теоретика предсказать плотность энергии вакуума. Исходя из масштабов энергий, характерных для фундаментальных взаимодействий, и соответствующих масштабов длин, он сделает свою оценку - и ошибется в невообразимое число раз - на десятки порядков величины. Наш теоретик предсказал бы такую большую энергию вакуума и такой вызванный ей темп расширения Вселенной, что дома на соседней улице должны были бы разлетаться от нас со скоростями, близкими к скорости света!

Проблема энергии вакуума ставила в тупик физиков-теоретиков задолго до открытия темной энергии. Так, в 1920–1930-х годах эта проблема волновала Вольфганга Паули, который в 1933 году писал : «Эта энергия [вакуума; тогда использовали термин «энергия нулевой точки», Nullpunktsenergie] должна быть не наблюдаемой в принципе, поскольку она не излучается, не поглощается, не рассеивается... и поскольку, как очевидно из опыта, она не создает гравитационного поля». Почему так происходит? Одна из возможностей состоит в том, что энергия пустого пространства каким-то образом всё же изменяется со временем и в конце концов становится близкой к нулю. Конкретные теоретические модели, иллюстрирующие эту возможность, построить чрезвычайно трудно, но можно; еще труднее вписать их в космологический контекст.

Если темная энергия - это энергия вакуума, то попытаться понять, почему она имеет столь малую величину, можно, следуя совсем другой логике. Представим себе, что Вселенная чрезвычайно велика, что она во много раз больше, чем наблюдаемая нами часть. Допустим далее, что в разных весьма обширных частях Вселенной могут реализовываться самые разные вакуумные состояния с самой разной плотностью энергии. Такая возможность, к слову, теоретически не исключена; более того, именно так, судя по всему, обстоит дело в теории суперструн, особенно если Вселенная проходила инфляционную стадию. Области Вселенной, где плотность энергии вакуума слишком велика по абсолютной величине, выглядят совершенно непохоже на нашу область: там, где энергия вакуума велика и положительна, пространство расширяется настолько быстро, что звезды и галактики просто не успевают образоваться; в областях с большой отрицательной энергией вакуума расширение пространства быстро сменяется сжатием, и эти области коллапсируют задолго до образования звезд. В обоих случаях космологическая эволюция несовместима с существованием наблюдателей, подобных нам. И, наоборот, мы могли появиться только там, где плотность энергии вакуума очень близка к нулю, - мы там и появились.

Такой, как говорят, антропный взгляд на проблему энергии вакуума высказывался более 20 лет назад в работах Андрея Линде и Стивена Вайнберга. Сейчас он популярен среди заметной части физиков-теоретиков. Другая часть воспринимает его как способ уйти от проблемы. Наиболее взвешенный подход, наверное, состоит в том, чтобы не исключать антропного объяснения как возможного конечного ответа, но попытаться всё же найти альтернативное решение проблем энергии вакуума и темной энергии.

Альтернативой вакууму как носителю темной энергии может служить какое-то новое поле, «разлитое» во Вселенной. В этом варианте энергия нового поля и является темной энергией. Новым это поле должно быть потому, что присутствие всюду во Вселенной известных полей (например, электромагнитного) слишком сильно влияло бы на поведение вещества и приводило бы к эффектам, которые давно были бы обнаружены. Кроме того, известные поля таковы, что их энергия не обладает перечисленными выше свойствами темной энергии.

Гипотетическое новое поле должно характеризоваться энергетическим масштабом порядка 0,002 эВ. Хотя это очень малый масштаб с точки зрения известных взаимодействий, он не выглядит совершенно неправдоподобным. Действительно, мы уже знаем, что масштабы разных взаимодействий сильно различаются между собой. Так, упоминавшийся масштаб сильных взаимодействий (200 МэВ) в 10 19 раз меньше масштаба гравитационных сил. Такое гигантское различие, конечно, само по себе требует объяснения, но это отдельный вопрос. В любом случае существование в природе разных энергетических масштабов - это факт, и введение нового малого масштаба непреодолимым препятствием не выглядит.

Новое поле, вообще говоря, изменяется в процессе эволюции Вселенной. Изменяется и его плотность энергии. Чтобы это изменение было не слишком быстрым, кванты нового поля - новые частицы - должны иметь чрезвычайно малую массу; говорят, что это поле должно быть легким.

Наконец, новое поле - это новая сила (так же, как гравитационное поле соответствует гравитационным, а электромагнитное - электрическим и магнитным силам). Легкое поле с чрезвычайно малой массой - сила с большим радиусом действия, подобная гравитации. Чтобы не было противоречия с экспериментами по проверке общей теории относительности, взаимодействие этого поля с обычным веществом должно быть очень слабым, слабее гравитационного.

Все эти свойства не выглядят для теоретика привлекательными, но с ними можно смириться. Важно, что гипотеза о новом поле хотя бы в принципе допускает экспериментальную проверку - с помощью наблюдений можно выявить изменение плотности энергии поля со временем. Это однозначно отметет гипотезу о вакуумной природе темной энергии и, наоборот, послужит указанием на существование во Вселенной нового легкого поля. К тому же в перспективе можно надеяться обнаружить неоднородность распределения темной энергии в пространстве. Это стало бы окончательным доказательством того, что темная энергия - энергия нового поля, а не что-нибудь еще.

С другой стороны, сегодня не видно способов зарегистрировать новое легкое поле в лабораторных экспериментах, на ускорителях и т. д. Причина - чрезвычайно слабое взаимодействие этого поля с веществом. Впрочем, мы еще слишком мало знаем, и, как говорится, никогда не говори «никогда».

Физики обсуждают разные типы гипотетических легких полей, энергия которых могла бы выступать в качестве темной энергии. В наиболее простом с теоретической точки зрения варианте плотность энергии нового поля убывает со временем. Для поля такого типа употребляют термин «квинтэссенция». Не исключена, однако, и обратная возможность, когда плотность энергии растет со временем; поле такого типа называют «фантомом». Фантом был бы весьма экзотическим полем; ничего подобного до сих пор в природе не встречалось. Различие между квинтэссенцией и фантомом, как мы обсудим ниже, важно с точки зрения удаленного будущего Вселенной.

Наконец, еще одно возможное объяснение темной энергии состоит в том, что никакой темной энергии на самом деле нет. Если общая теория относительности неприменима на современных космологических масштабах длин и времен, то и в темной энергии нет необходимости.

Разумеется, при таком взгляде на темную энергию нельзя не учитывать тот факт, что общая теория относительности хорошо проверена на меньших масштабах расстояний. Поэтому нужно создать новую теорию гравитации, которая переходила бы в общую теорию относительности на этих расстояниях, но иначе описывала бы эволюцию Вселенной на сравнительно поздних, близких к нашей стадиях. Это трудная задача, особенно если учесть требование самосогласованности, внутренней непротиворечивости теории. Тем не менее такие попытки делаются, и некоторые из них выглядят довольно перспективными.

Одна из возможностей состоит в том, чтобы разрешить ньютоновской постоянной всемирного тяготения меняться в пространстве и во времени, подчиняясь определенным уравнениям. К сожалению, наиболее красивые версии теории, реализующие эту возможность, отвергнуты экспериментами по проверке общей теории относительности. Если же за красотой не гнаться, то модели, объясняющие ускоренное расширение Вселенной и согласующиеся со всем, что известно про гравитацию, построить на этом пути можно. Такие модели, как правило, предсказывают отклонения от общей теории относительности, которые хотя и малы, но в перспективе экспериментально обнаружимы.

Отметим еще идею о том, что наше пространство может иметь больше трех измерений. При этом дополнительные измерения на обычных расстояниях ничем себя не проявляют, а на космологических расстояниях в миллиарды световых лет силовые линии гравитационного поля могут «расползаться» в дополнительные измерения, отчего гравитация не будет больше описываться обычным законом Ньютона. Вполне удовлетворительной теории, объясняющей таким образом ускоренное расширение Вселенной, до сих пор не построено; в предложенных к настоящему времени моделях эта идея реализована лишь отчасти. Замечательно, тем не менее, что эти модели приводят к своим предсказаниям для эксперимента. Среди них - возможность изменения гравитационного закона Ньютона на малых расстояниях; малые, но обнаружимые поправки к общей теории относительности в Солнечной системе и т. д.

Итак, открытые недавно особенности расширения Вселенной поставили новый вопрос: вызваны ли они энергией вакуума, энергией нового легкого поля или новой гравитацией на сверхбольших расстояниях? Теоретическое изучение этих возможностей в самом разгаре, а ответ, как обычно в физике, в конечном итоге должны дать новые эксперименты.

Темная энергия и будущее Вселенной

С открытием темной энергии сильно изменились представления о том, каким может быть отдаленное будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трехмерного пространства. Если бы, как многие раньше считали, кривизна пространства на 70% определяла современный темп расширения Вселенной, а темная энергия отсутствовала, то Вселенная расширялась бы неограниченно, постепенно замедляясь. Теперь же понятно, что будущее определяется свойствами темной энергии.

Поскольку мы эти свойства знаем сейчас плохо, предсказать будущее мы пока не можем. Можно только рассмотреть разные варианты. Про то, что происходит в теориях с новой гравитацией, сказать трудно, но другие сценарии есть возможность обсудить уже сейчас.

Если темная энергия постоянна во времени, как в случае энергии вакуума, то Вселенная будет всегда испытывать ускоренное расширение. Большинство галактик в конце концов удалится от нашей на громадное расстояние, и наша Галактика вместе с немногими соседями окажется островком в пустоте. Если темная энергия - квинтэссенция, то в далеком будущем ускоренное расширение может прекратиться и даже смениться сжатием. В последнем случае Вселенная вернется в состояние с горячей и плотной материей, произойдет «Большой взрыв наоборот», назад во времени.

Еще более драматическая судьба ожидает Вселенную, сели темная энергия - фантом, причем такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет всё более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Дело дойдет до того, что электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Произойдет, как говорят, Большой разрыв.

Такой сценарий, однако, представляется не очень вероятным. Скорее всего, плотность энергии фантома будет оставаться ограниченной. Но и тогда Вселенную может ожидать необычное будущее. Дело в том, что во многих теориях фантомное поведение - рост плотности энергии со временем - сопровождается неустойчивостями фантомного поля. В таком случае фантомное поле во Вселенной будет становиться сильно неоднородным, плотность его энергии в разных частях Вселенной будет разной, какие-то части будут быстро расширяться, а какие-то, возможно, испытают коллапс. Судьба нашей Галактики будет зависеть от того, в какую область она попадет.

Всё это, впрочем, относится к будущему, отдаленному даже по космологическим меркам. В ближайшие 20 млрд. лет Вселенная будет оставаться почти такой же, как сейчас. У нас есть время для того, чтобы разобраться в свойствах темной энергии и тем самым более определенно предсказать будущее - а может быть, и повлиять на него.

В последнее время в космологии - науке, которая изучает структуру и эволюцию Вселенной, - стал широко применяться термин «темная энергия», вызывающий у людей, далеких от этих исследований, по меньшей мере легкое недоумение. Часто в паре с ним выступает и другой «мрачный» термин - «темная материя», а также упоминается, что, по данным наблюдений, эти две субстанции обеспечивают 95% полной плотности Вселенной. Прольем же луч света на это «царство мрака».

В научной литературе термин «темная энергия» появился в конце прошлого века для обозначения физической среды, заполняющей всю Вселенную. В отличие от различных видов вещества и излучения, от которых можно (хотя бы теоретически) полностью очистить или экранировать некоторый объем, темная энергия в современной Вселенной неразрывно связана с каждым кубическим сантиметром пространства. С некоторой натяжкой можно сказать, что само пространство обладает массой и участвует в гравитационном взаимодействии. (Напомним, что согласно известной формуле E = mc 2 энергия эквивалентна массе.)

Первое слово в термине «темная энергия» указывает на то, что эта форма материи не испускает и не поглощает никакого электромагнитного излучения, в частности света. С обычным веществом она взаимодействует только через гравитацию. Слово же «энергия» противопоставляет эту среду структурированной, то есть состоящей из частиц, материи, подчеркивая, что она не участвует в процессе гравитационного скучивания, ведущего к образованию галактик и их скоплений. Иными словами, плотность темной энергии, в отличие от обычного и темного вещества, одинакова во всех точках пространства.

Во избежание путаницы сразу отметим, что мы исходим из материалистического представления об окружающем нас мире, а значит, все, что заполняет Вселенную, - это материя. Если материя структурирована, ее называют веществом, а если нет, как, например, поле, то - энергией. Вещество, в свою очередь, делят на обычное и темное, ориентируясь на то, взаимодействует ли оно с электромагнитным излучением. Правда, по сложившейся в космологии традиции темное вещество принято называть «темной материей». Энергия тоже делится на два типа. Один из них - это как раз излучение, еще одна субстанция, наполняющая Вселенную. Когда-то именно излучение определяло эволюцию нашего мира, но сейчас его роль упала почти до абсолютного нуля, точнее до 3 градусов Кельвина - температуры так называемого реликтового микроволнового излучения, идущего в космосе со всех сторон. Это остаток (реликт) горячей молодости нашей Вселенной. А вот о другом типе энергии, который не взаимодействует ни с веществом, ни с излучением и проявляет себя исключительно гравитационно, мы бы могли никогда не узнать, если бы не исследования в области космологии.

С излучением и обычным веществом, состоящим из атомов, мы постоянно имеем дело в повседневной жизни. Гораздо меньше мы знаем о темной материи. Тем не менее достаточно надежно установлено, что ее физическим носителем являются некие слабовзаимодействующие частицы. Известны даже некоторые свойства этих частиц, например, что у них есть масса, а движутся они много медленнее света. Однако они никогда еще не регистрировались искусственными детекторами.

Самая большая ошибка Эйнштейна

Вопрос о природе темной энергии еще туманнее. Поэтому, как часто бывает в науке, отвечать на него лучше, описывая предысторию вопроса. Она начинается в памятном для нашей страны 1917 году, когда создатель общей теории относительности Альберт Эйнштейн , публикуя решение задачи об эволюции Вселенной, ввел в научный оборот понятие космологической постоянной. В своих уравнениях, описывающих свойства гравитации, он обозначил ее греческой буквой «лямбда» (Λ). Так она получила свое второе название - лямбда-член. Назначение космологической постоянной состояло в том, чтобы сделать Вселенную стационарной, то есть неизменной и вечной. Без лямбда-члена уравнения общей теории относительности предсказывали, что Вселенная должна быть неустойчивой, как воздушный шарик, из которого вдруг исчез весь воздух. Всерьез изучать такую неустойчивую Вселенную Эйнштейн не стал, а ограничился тем, что восстановил равновесие введением космологической постоянной.

Однако позднее, в 1922-1924 годах, наш выдающийся соотечественник Александр Фридман показал, что в судьбе Вселенной космологическая постоянная не может играть роль «стабилизатора», и рискнул рассмотреть неустойчивые модели Вселенной. В результате ему удалось найти еще не известные к тому времени нестационарные решения уравнений Эйнштейна, в которых Вселенная как целое сжималась или расширялась.

В те годы космология была сугубо умозрительной наукой, пытавшейся чисто теоретически применить физические уравнения ко Вселенной как целому. Поэтому решения Фридмана поначалу были восприняты - в том числе и самим Эйнштейном - как математическое упражнение. Вспомнили о нем после открытия разбегания галактик в 1929 году. Фридмановские решения прекрасно подошли для описания наблюдений и стали важнейшей и широко используемой космологической моделью. А Эйнштейн позднее назвал космологическую постоянную своей «самой большой научной ошибкой».

Далекие сверхновые

Постепенно наблюдательная база космологии становилась все более мощной, а исследователи учились не только задавать вопросы природе, но и получать на них ответы. И вместе с новыми результатами росло и число аргументов в пользу реального существования «самой большой научной ошибки» Эйнштейна. В полный голос об этом заговорили в 1998 году после наблюдения далеких сверхновых звезд, которые указывали, что расширение Вселенной ускоряется. Это означало, что во Вселенной действует некая расталкивающая сила, а значит, и соответствующая ей энергия, похожая по своим проявлениям на эффект от лямбда-члена в уравнениях Эйнштейна. По сути, лямбда-член представляет собой математическое описание простейшего частного случая темной энергии.

Напомним, что согласно наблюдениям космологическое расширение подчиняется закону Хаббла: чем больше расстояние между двумя галактиками, тем быстрее они удаляются друг от друга, причем скорость, определяемая по красному смещению в спектрах галактик, прямо пропорциональна расстоянию. Но до недавнего времени закон Хаббла был непосредственно проверен лишь на относительно небольших расстояниях - тех, что удавалось более или менее точно измерить. О том, как расширялась Вселенная в далеком прошлом, то есть на больших расстояниях, можно было судить только по косвенным наблюдательным данным. Заняться прямой проверкой закона Хаббла на больших расстояниях удалось лишь в конце XX века, когда появился способ определять расстояния до далеких галактик по вспыхивающим в них сверхновым звездам.

Вспышка сверхновой - это момент в жизни массивной звезды, когда она испытывает катастрофический взрыв. Сверхновые бывают разных типов в зависимости от конкретных обстоятельств, предшествующих катаклизму. При наблюдениях тип вспышки определяют по спектру и форме кривой блеска. Сверхновые, получившие обозначение Ia, возникают при термоядерном взрыве белого карлика, масса которого превысила пороговое значение ~1,4 массы Солнца, называемое пределом Чандрасекара. Пока масса белого карлика меньше порогового значения, сила гравитации звезды уравновешивается давлением вырожденного электронного газа. Но если в тесной двойной системе с соседней звезды на него перетекает вещество, то в определенный момент электронное давление оказывается недостаточным и звезда взрывается, а астрономы регистрируют еще одну вспышку сверхновой типа Ia. Поскольку пороговая масса и причина, по которой белый карлик взрывается, всегда одинаковы, такие сверхновые в максимуме блеска должны иметь одинаковую, причем весьма большую светимость и могут служить «стандартной свечой» для определения межгалактических расстояний. Если собрать данные по многим таким сверхновым и сравнить расстояния до них с красными смещениями галактик, в которых случались вспышки, то можно определить, как менялся в прошлом темп расширения Вселенной, и подобрать соответствующую космологическую модель, в частности подходящую величину лямбда-члена (плотности темной энергии).

Однако несмотря на простоту и ясность этого метода, он сталкивается с рядом серьезных трудностей. Прежде всего отсутствие детальной теории взрыва cверхновых типа Ia делает зыбким их статус стандартной свечи. На характер взрыва, а значит, и на светимость сверхновой могут влиять скорость вращения белого карлика, химический состав его ядра, количество водорода и гелия, перетекшего на него с соседней звезды. Как все это сказывается на кривых блеска, пока достоверно неизвестно. Наконец, сверхновые вспыхивают не в пустом пространстве, а в галактиках, и свет вспышки может, к примеру, оказаться ослаблен случайным газопылевым облаком, встретившимся на пути к Земле. Все это ставит под сомнение возможность использования сверхновых в качестве стандартных свечей. И если бы в пользу существования темной энергии был только этот довод, данная статья вряд ли была бы написана. Так что хотя «аргумент сверхновых» спровоцировал широкую дискуссию о темной энергии (и даже появление самого этого термина), уверенность космологов в ее существовании опирается на другие, более убедительные аргументы. К сожалению, они не столь просты, и поэтому описать их можно лишь в самых общих чертах.

Краткая история времен

По современным представлениям, рождение Вселенной должно описываться в терминах еще не созданной квантовой теории гравитации. Понятие «возраст Вселенной» имеет смысл для моментов времени не раньше 10-43 секунд. На меньших масштабах уже нельзя говорить о привычном нам линейном течении времени. Топологические свойства пространства тоже становятся нестабильными. По-видимому, в малых масштабах пространство-время заполнено микроскопическими «кротовыми норами» - своего рода тоннелями, соединяющими разнесенные области Вселенной. Впрочем, о расстояниях или порядке следования событий говорить тоже невозможно. В научной литературе такое состояние пространства-времени с флуктуирующей топологией называют квантовой пеной. По неизвестным пока причинам, возможно, из-за квантовой флуктуации, в пространстве Вселенной возникает физическое поле, которое в возрасте около 10-35 секунд заставляет Вселенную расширяться с колоссальным ускорением. Этот процесс называют инфляцией, а вызывающее его поле - инфлатоном. В отличие от экономики, где инфляция является неизбежным злом, с которым нужно бороться, в космологии инфляция, то есть экспоненциально быстрое увеличение Вселенной, - это благо. Именно ей мы обязаны тем, что Вселенная обрела большой размер и плоскую геометрию. В конце этой короткой эпохи ускоренного расширения запасенная в инфлатоне энергия порождает известную нам материю: разогретую до огромной температуры смесь излучения и массивных частиц, а также едва заметную на их фоне темную энергию. Можно сказать, что это и есть Большой взрыв. Космологи говорят об этом моменте, как о начале радиационно-доминированной эпохи в эволюции Вселенной, поскольку большая часть энергии в это время приходится на излучение. Однако расширение Вселенной продолжается (хотя теперь уже и без ускорения) и оно по-разному отражается на основных типах материи. Ничтожная плотность темной энергии со временем не меняется, плотность вещества падает обратно пропорционально объему Вселенной, а плотность излучения снижается еще быстрее. В итоге спустя 300 тысяч лет доминирующей формой материи во Вселенной становится вещество, большую часть которого составляет темная материя. С этого момента рост возмущений плотности вещества, едва тлевший на стадии доминирования излучения, становится достаточно быстрым, чтобы привести к образованию галактик, звезд и столь необходимых человечеству планет. Движущей силой этого процесса является гравитационная неустойчивость, приводящая к скучиванию вещества. Едва заметные неоднородности оставались еще с момента распада инфлатона, но пока во Вселенной доминировало излучение, оно мешало развитию неустойчивости.
Теперь основную роль начинает играть темная материя. Под действием собственной гравитации области повышенной плотности останавливаются в своем расширении и начинают сжиматься, в результате чего из темной материи образуются гравитационносвязанные системы, называемые гало. В гравитационном поле Вселенной образуются «ямы», в которые устремляется обычное вещество. Накапливаясь внутри гало, оно формирует галактики и их скопления. Этот процесс образования структур начался более 10 миллиардов лет назад и шел по нарастающей, пока не наступил последний перелом в эволюции Вселенной. Через 7 миллиардов лет (это примерно половина нынешнего возраста Вселенной) плотность вещества, которая продолжала снижаться из-за космологического расширения, стала меньше плотности темной энергии. Тем самым завершилась эпоха доминирования вещества, и теперь темная энергия контролирует эволюцию Вселенной. Какова бы ни была ее физическая природа, проявляется она в том, что космологическое расширение вновь, как в эпоху инфляции, начинает ускоряться, только на этот раз очень медленно. Но даже этого достаточно, чтобы затормозить формирование структур, а в будущем оно должно вовсе прекратиться: любые недостаточно плотные образования будут рассеиваться ускоряющимся расширением Вселенной. Временное «окно», в котором работает гравитационная неустойчивость и возникают галактики, захлопнется уже через десяток миллиардов лет. Дальнейшая эволюция Вселенной зависит от природы темной энергии. Если это космологическая постоянная, то ускоренное расширение Вселенной будет продолжаться вечно. Если же темная энергия - это сверхслабое скалярное поле, то после того как оно достигнет состояния равновесия, расширение Вселенной станет замедляться, а возможно сменится сжатием. Пока физическая природа темной энергии неизвестна, все это не более чем умозрительные гипотезы. Таким образом, с определенностью сказать можно только одно: ускоренное расширение Вселенной будет продолжаться еще несколько десятков миллиардов лет. За это время наш космический дом - галактика Млечный Путь - сольется со своей соседкой - Туманностью Андромеды (и большинством галактик-спутников меньшей массы, входящих в состав Местной Группы). Все прочие галактики улетят на большие расстояния, так что многие из них нельзя будет увидеть даже в самый мощный телескоп. Что касается реликтового излучения, которое приносит нам так много важнейшей информации о структуре Вселенной, то его температура упадет почти до нуля, и этот источник информации будет потерян. Человечество останется Робинзоном на острове с эфемерной перспективой обзавестись хотя бы Пятницей.

Крупномасштабная структура Вселенной

У космологов имеются два основных источника знаний о крупномасштабной структуре Вселенной. Прежде всего это распределение в окружающем нас пространстве светящейся материи, то есть галактик. Трехмерная карта показывает, в какие структуры - группы, скопления, сверхскопления - объединяются галактики и каковы характерные размеры, формы и численность этих образований. Тем самым становится понятно, как распределено вещество в современной Вселенной.

Другим источником информации служит распределение интенсивности реликтового излучения по небесной сфере. Карта неба в микроволновом диапазоне несет информацию о распределении неоднородностей плотности в ранней Вселенной, когда ее возраст составлял около 300 тысяч лет - именно тогда вещество стало прозрачным для излучения. Угловые расстояния между пятнами на микроволновой карте говорят о размерах неоднородностей в то время, а перепады яркости (они, кстати, очень маленькие, порядка сотой доли процента) указывают на степень уплотнения зародышей будущих скоплений галактик. Тем самым у нас есть как бы два временных среза: структура Вселенной в моменты через 300 тысяч и 14 миллиардов лет после Большого взрыва .

Теория говорит о том, что характеристики наблюдаемых структур сильно зависят от того, какая часть материи во Вселенной приходится на вещество (обычное и темное). Расчеты, основанные на наблюдательных данных, показывают, что его доля составляет сегодня около 30% (из которых лишь 5% приходится на обычное вещество, состоящее из атомов). А значит, остальные 70% - это материя, не входящая ни в какие структуры, то есть темная энергия. Этот аргумент не столь прозрачен, поскольку за ним стоят сложные расчеты, описывающие образования структур во Вселенной. Тем не менее он действительно более сильный. Это можно проиллюстрировать такой аналогией. Представьте, что внеземная цивилизация стремится обнаружить разумную жизнь на Земле. Одна группа исследователей заметила идущее от нашей планеты мощное радиоизлучение, которое периодически изменяет частоту и интенсивность, и объясняет это работой электронного оборудования. Другая группа послала к Земле зонд и сфотографировала квадраты полей, линии дорог, узлы городов. Первый аргумент, конечно, проще, но второй - убедительнее.

Продолжая эту аналогию, можно сказать, что еще более наглядным свидетельством разумной жизни стало бы наблюдение за формированием перечисленных структур. Конечно, человеку пока не под силу в реальном времени наблюдать, как формируются скопления галактик. Тем не менее можно определить, как менялось их число по ходу эволюции Вселенной. Дело в том, что в силу конечности скорости света наблюдение объектов на больших расстояниях эквивалентно заглядыванию в прошлое.

Темп образования галактик и их скоплений определяется скоростью роста возмущений плотности, которая, в свою очередь, зависит от параметров космологической модели, в частности от соотношения вещества и темной энергии. Во Вселенной с большой долей темной энергии возмущения растут медленно, а значит, сегодня скоплений галактик должно быть ненамного больше, чем в прошлом, и с расстоянием их число будет убывать медленно. Напротив, во Вселенной без темной энергии количество скоплений довольно быстро сокращается с углублением в прошлое. Выяснив из наблюдений темп появления новых скоплений галактик, можно получить независимую оценку плотности темной энергии.

Есть и другие независимые наблюдательные аргументы, подтверждающие существование однородной среды, которая оказывает определяющее влияние на строение и эволюцию Вселенной. Можно сказать, что утверждение о существовании темной энергии стало итогом развития всей наблюдательной космологии ХХ века.

Вакуум и другие модели

Если в существовании темной энергии большинство космологов уже не сомневаются, то вот относительно ее природы ясности пока нет. Впрочем, физики не первый раз попадают в такое положение. Многие новые теории начинаются с феноменологии, то есть формального математического описания того или иного эффекта, а интуитивно понятные объяснения появляются намного позже. На сегодня, описывая физические свойства темной энергии, космологи произносят слова, которые для непосвященного больше похожи на заклинание: это среда, давление которой равно плотности энергии по величине, но противоположно по знаку. Если это странное соотношение подставить в уравнение Эйнштейна из общей теории относительности, то окажется, что такая среда гравитационно отталкивается от самой себя и, как следствие, ускоренно расширяется и ни за что не соберется ни в какие сгустки.

Нельзя сказать, что мы часто имеем дело с подобной материей. Однако именно так уже на протяжении многих лет физики описывают вакуум. По современным представлениям, элементарные частицы существуют не в пустом пространстве, а в особой среде - физическом вакууме, который как раз и определяет их свойства. Эта среда может находиться в различных состояниях, отличающихся плотностью запасенной энергии, и в разных видах вакуума элементарные частицы ведут себя по-разному.

Наш обычный вакуум обладает наименьшей энергией. Экспериментально обнаружено существование неустойчивого, более энергичного вакуума, который соответствует так называемому электрослабому взаимодействию. Он начинает проявляться при энергиях частиц свыше 100 гигаэлектронвольт - это всего на порядок ниже предела возможностей современных ускорителей. Еще более энергичные виды вакуума предсказаны теоретически. Можно предположить, что наш обычный вакуум обладает не нулевой плотностью энергии, а как раз такой, которая дает нужное значение лямбда-члена в уравнении Эйнштейна.

Однако эта красивая идея, состоящая в том, чтобы приписать темную энергию вакууму, не вызывает восторга у исследователей, работающих на стыке физики элементарных частиц и космологии. Дело в том, что такой разновидности вакуума должна соответствовать энергия частиц всего около тысячной доли электронвольта. Но этот энергетический диапазон, лежащий на границе между инфракрасным и радиоизлучением, уже давно вдоль и поперек изучен физиками, и ничего аномального там не обнаружено.

Поэтому исследователи склоняются к тому, что темная энергия - это проявление нового и пока не обнаруженного в лабораторных условиях сверхслабого поля. Эта идея аналогична той, что лежит в основе современной инфляционной космологии. Там тоже сверхбыстрое расширение молодой Вселенной происходит под действием так называемого скалярного поля, только его плотность энергии гораздо выше той, что ответственна за нынешнее неспешное ускорение в расширении Вселенной. Можно предположить, что поле, являющееся носителем темной энергии, осталось как реликт Большого взрыва и долгое время находилось в состоянии «спячки», пока длилось доминирование сначала излучения, а потом темной материи.

Отрицательное давление и гравитационное отталкивание

Описывая темную энергию, космологи считают, что ее главное свойство - отрицательное давление. Оно приводит к появлению отталкивающих гравитационных сил, о которых неспециалисты иногда говорят как об антигравитации. В этом утверждении содержатся сразу два парадокса. Разберем их последовательно.

Как давление может быть отрицательным? Давление обычного вещества, как известно, связано с движением молекул. Ударясь о стенку сосуда, молекулы газа передают ей свой импульс, отталкивают ее, давят на нее. Свободные частицы не могут создать отрицательное давление, не могут «тянуть одеяло на себя», но в твердом теле подобное вполне возможно. Неплохой аналогией отрицательного давления темной энергии служит оболочка воздушного шарика. Каждый ее квадратный сантиметр растянут и стремится сжаться. Появись где-нибудь в оболочке разрыв, она немедленно стянулась бы в маленькую резиновую тряпочку. Но пока разрыва нет, отрицательное натяжение равномерно распределено по всей поверхности. Причем если шарик надувать, резина будет становиться тоньше, а запасенная в ее натяжении энергия будет расти. Сходным образом ведет себя при расширении Вселенной плотность вещества и темной энергии.

Почему отрицательное давление ускоряет расширение? Казалось бы, под действием отрицательного давления темной энергии Вселенная должна сжиматься или уж, по крайней мере, замедлять свое расширение, начавшееся в момент Большого взрыва. Но все обстоит как раз наоборот, потому что отрицательное давление темной энергии слишком... велико.

Дело в том, что согласно общей теории относительности гравитация зависит не только от массы (точнее плотности энергии), но также и от давления. Чем больше давление, тем сильнее гравитация. А чем больше отрицательное давление, тем она слабее! Правда, давления, достижимые в лабораториях и даже в центре Земли и Солнца, слишком малы, чтобы их влияние на гравитацию можно было заметить. Но вот отрицательное давление темной энергии, наоборот, столь велико, что пересиливает притяжение и ее собственной массы, и массы всего остального вещества. Получается, что массивная субстанция с очень сильным отрицательным давлением парадоксальным образом не сжимается, а наоборот, распухает под действием собственной гравитации. Представьте себе тоталитарное государство, которое, стремясь обеспечить свою безопасность, зажимает свободу до такой степени, что граждане массово бегут из страны, бунтуют и в конце концов разрушают само государство. Почему чрезмерные усилия по укреплению государства оборачиваются его разрушением? Таковы свойства людей - они сопротивляются подавлению. Почему сильнейшее отрицательное давление вместо сжатия приводит к расширению? Таковы свойства гравитации, выраженные уравнением Эйнштейна. Конечно, аналогия - это не объяснение, но она помогает «уложить в голове» парадоксы темной энергии.

Как взвесить структуру?

Темная энергия - важнейшее свидетельство существования явлений, которые не описываются современной физикой. Поэтому детальное изучение ее свойств - важнейшая задача наблюдательной космологии. Чтобы выяснить физическую природу темной энергии, необходимо в первую очередь максимально точно исследовать, как менялся в прошлом режим расширения Вселенной. Можно пытаться прямо измерить зависимость темпа расширения от расстояния. Однако из-за отсутствия в астрономии надежных методов определения внегалактических расстояний достичь на этом пути необходимой точности практически невозможно. Но есть другие, более перспективные способы измерения темной энергии, которые являются логическим развитием структурного аргумента в пользу ее существования.

Как уже отмечалось, темп образования структур очень сильно зависит от плотности темной энергии. Сама она не может скучиваться и создавать структуры и препятствует гравитационному скучиванию темной и обычной материи. Кстати, поэтому в нашу эпоху те комки вещества, которые еще не начали сжиматься, постепенно «растворяются» в море темной энергии, переставая «чувствовать» взаимное притяжение. Человечество, таким образом, является свидетелем максимального в истории Вселенной темпа образования структур. В дальнейшем он будет только уменьшаться.

Чтобы определить, как менялась со временем плотность темной энергии, нужно научиться «взвешивать» структуру Вселенной - галактики и их скопления - на разных красных смещениях. Есть много способов это сделать, ведь объекты измерения - галактики - хорошо изучены и видны даже на больших расстояниях. Наиболее прямолинейный подход состоит в тщательном подсчете галактик и их структур по упоминавшейся трехмерной карте пространственного распределения галактик. В другом методе масса структуры оценивается по создаваемому ею неоднородному гравитационному полю. Проходя через структуру, свет отклоняется ее гравитацией, и в результате видимые нами изображения далеких галактик деформируются. Этот эффект называется гравитационным линзированием. Измеряя возникающие искажения, можно определить (взвесить) структуру на пути следования света. Этим методом уже сделаны первые успешные наблюдения, а на будущее запланированы космические эксперименты - ведь надо достичь максимальной точности измерения.

Итак, мы живем в мире, динамика расширения которого управляется неизвестной нам формой материи. А единственно достоверное знание о ней, помимо факта ее существования, - это уравнение состояния вакуумоподобного типа, та самая своеобразная связь между плотностью энергии и давлением. Пока нам неизвестно, меняется ли характер этой связи со временем, и если да, то как. А значит, все рассуждения о будущем Вселенной, по сути, являются спекулятивными, основанными в значительной мере на эстетических воззрениях их авторов. Но мы вступили в эру точной космологии, основанной на высокотехнологичных инструментах для наблюдения и развитых статистических методах обработки данных. Если астрономия будет и дальше развиваться такими же темпами, как сегодня, загадка темной энергии будет разгадана уже нынешним поколением исследователей.

"Информация, положенная в основу Ииссиидиологии, призвана в корне изменить всё ваше нынешнее видение мира, который вместе со всем, что в нём находится, - от минералов, растений, животных и человека до далёких Звёзд и Галактик - в действительности представляет собой невообразимо сложную и чрезвычайно динамичную Иллюзию, не более реальную, чем ваш сегодняшний сон".

Введение.

1. Подсчёт массы вселенной.

2. Тёмная материя.

3. Из чего состоит масса вселенной.

4. Темная энергия.

5. Тёмная материя и тёмная энергия с точки зрения ииссиидиологии.

Заключение.

Список литературы.

Введение

Видимое нами вещество — лишь малая часть того, из чего состоит наша Вселенная. Все остальное — тёмная материя итёмная энергия . Цель реферата - попытка автора реферата понять, что представляет собой тёмная материя и тёмная энергия с точки зрения учёных, и как объясняет природу тёмной материи и тёмной энергии ииссиидиология, которая даёт нам новейшие космологические представления о Вселенной и человеке.

1. Подсчёт массы вселенной

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что вселенная расширяется. Силы гравитационного притяжения, действующие между отдельными частями вселенной, стремятся затормозить разбегание этих частей.

Всё зависит от массы вселенной. Если масса достаточно велика, то силы тяготения постепенно остановят расширение вселенной, и оно сменится сжатием. В результате вселенная, в конце концов, опять «схлопнется» в точку, из которой когда-то начала расширяться. То есть, если масса меньше некоторой критической массы, то расширение будет продолжаться вечно, а если больше, то вселенная начнёт сжиматься.

Было рассчитано значение критической средней плотности вселенной, которое соответствует примерно 10-29 г/куб.см или в среднем пяти нуклонам на кубический метр. Разными методами сотни раз измеряли и подсчитывали усреднённую по объёму вселенной концентрацию нуклонов. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности вселенной едва дотягивает до нескольких процентов от критической плотности.

2. Тёмная материя

В середине 30-х годов XX века швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления «Волосы Вероники» (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления «Волосы Вероники» гораздо больше видимой. Основное количество материи остается невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. В соответствии с теорией относительности, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. По искажению изображения галактики можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. Рассчитанная масса оказывается всегда во много раз больше, нежели вклад видимого вещества скопления.

В 70-е годы американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра.

Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто , чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter») и до сих пор остается самой интригующей загадкой в астрофизике.

Объяснить формирование галактик после Большого взрыва без тёмной материи также оказалось невозможно . Силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетическую энергию разлета. Вещество просто не должно было собраться в галактики, которые мы, тем не менее, наблюдаем в современную эпоху. Однако, если предположить, что частицы обычного вещества в ранней вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места, и формирование галактик из звезд, а затем скоплений из галактик, становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы вселенной.

Наконец, общая теория относительности однозначно связывает темп расширения вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10-29 граммам на кубический сантиметр.

Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы вселенной и есть темная материя. Измеренное из скорости расширения вселенной значение плотности равно критическому . Если в действительности плотность вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

3. Из чего состоит масса вселенной

Истинная масса вселенной оказалась намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей. Видимый мир оказался только небольшой добавкой к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики, да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

К началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть. Стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино.

Оставшиеся 92-95% скрытой массы состоят из двух частей — темной материи и темной энергии . Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабо взаимодействующие частицы (так называемая холодная темная материя).

Получилось, что масса Вселенной имеет следующий состав:

    Видимое вещество - 5%

    Нейтрино - 0,3 - 3%

    Барионная тёмная материя - 4 - 5%

    Небарионная тёмная материя - 20-25%

    Тёмная энергия - 65-70%

4. Темная энергия

Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений.

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. После того, как было открыто расширение вселенной, надобность в ней отпала. А.Эйнштейн назвал космологическую постоянную Λ своей самой большой научной ошибкой.

Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность вселенной. Эту часть скрытой массы и стали называть «темная энергия».

Тёмная энергия равномерно распределена по Вселенной в отличие от обычного вещества и других форм темной материи. Она является антигравитационным полем неизвестной природы - за счет ее присутствия темп расширения вселенной растет. Тёмная энергия заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры.

В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум . Плотность энергии вакуума не изменяется при расширении вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция .

5. Тёмная материя и тёмная энергия с точки зрения ииссиидиологии

Ииссиидиологическая трактовка природы тёмной материи и тёмной энергии отличается от научной. Сотворение Вселенной намного глубже и осознанней, чем модели образования вселенной, описываемые учёными, такие, как например, модель «Большого взрыва» и её инфляционная интерпретация, а также альтернативная им циклическая теория Стейнхардта и Тьюрока.

С точки зрения ииссиидиологии одновременно-одномоментно образовалось бесконечное множество разномерностных и разнокачественных Вселенных. Вселенная, которую мы способны воспринимать с помощью наших органов чувств и сконструированных приборов, представляет небольшую часть сведений об одном типе Мироздания - синтетическом, то есть сформированном с помощью фокусной динамики форм самосознаний. Атомы, молекулы, элементарные частицы, животные, растения, минералы, явления природы, планеты, звёзды, галактики, все видимые и невидимые объекты представляют собой разнокачественные формы самосознания, которые своей фокусной динамикой образуют множество взаимосвязей между Информацией и Энергией . От плотности образуемых в самосознании личности энергоинформационных взаимосвязей и качеств задействованной информации зависит мерность и качество субъективной реальности, в которой личность себя самоосознаёт. То есть мерность окружающей нас действительности для каждого из нас разная и зависит от качественности наших мыслей, чувств, психических реакций, текущих представлений.

Мерность субъективной реальности, которую образует в данный момент всё человечество Земли, соответствует 3-4 мерному диапазону проявления форм самосознания. Переносчиками Энергии и Информации в данном - волновом - диапазоне являются разнокачественные формы самосознаний фотонов и фермионов, которые являются структурной основой нас и окружающей нас действительности. То, что выходит за пределы диапазона их творческой активности, то есть за пределы 3-4 мерности, воспринимается нами как «тёмная материя». В нашем диапазоне большая часть окружающей действительности является «тёмной материей», потому что не образует ни с чем в нашей мерности атомарные энергоинформационные взаимосвязи.

Бесконечное множество разномерностных, разнокачественных и разнотипных Вселенных образовалось в результате Инициализации Импульс-Потенциалами. И часть ранее уравновешенной информации стала диссонационной, неуравновешенной, то есть обрела стремление к уравновешиванию с информацией - энергию. Между неуравновешенной и уравновешенной частями информации возникло корректирующее взаимодействие - универсальное плазменно-дифференциационное излучение (УПДИ), которое мгновенно определило все потенциальные варианты творческой активности всевозможных форм самосознания для восстановления равновесного состояния информации. Объективно восстановление равновесия происходит одновременно-одномоментно, а субъективно - инерционно - например, в нашем синтетическом типе Мироздания с помощью фокусных динамик всех форм самосознаний образовалось множество разнокачественных пространственно-временных континуумов с разными диапазонами мерности.

УПДИ является связующей основой между всеми диапазонами мерности и между всеми формами самосознаний. Благодаря УПДИ наш 3-4-мерный диапазон структурирован не только волновыми формами самосознания, но также дооллсовыми (2-3-мерный диапазон) и флаксовыми (4-5-мерный диапазон).

Другие диапазоны мерности в нашем диапазоне проявляются благодаря УПДИ в виде реликтового излучения, «тёмной энергии», «тёмной материи» . «Тёмная материя» и «тёмная энергия» представляют собой «внутренний» творческий потенциал, сллоогрентно структурирующий УПДИ, без которого невозможно было бы осуществить ни одно энергоинформационное взаимодействие в пространстве и времени. УПДИ в нашем диапазоне мерности является основой для материализации в системе восприятия всей окружающей действительности, то есть той части информации, которая после инициализации стала диссонационной, неуравновешенной и уравновешивается фокусной динамикой разнокачественных форм самосознания.

Уравновешивая фокусной динамикой диссонационную часть информационного пространства самосознания, мы реализуем свои интересы в данном диапазоне и постепенно начинаем осознавать себя в условиях 4-5-мерного диапазона, где и мы, и окружающая действительность, и «тёмная материя» будут иметь другие характеристики.

Механизм проявления в самосознания окружающей действительности базируется на изначальном существовании всевозможных вариантов событий, как воспринимаемых, так и недоступных нашему субъективному восприятию. Фокусная динамика каждой формы самосознания одновременно мультиполяризована в бесчисленном множестве всевозможных вариантов развития, инерционно-резонационно и узкоспецифически проявляющихся во всей многомерной сллоогрентности Пространства-Времени посредством ежемгновенных выборов всего множества форм самосознаний, которые уже изначально структурируют своими конфигурациями эту сллоогрентность мироздания.

Вселенский акт, который представляется учёным как «Большой Взрыв » , с точки зрения ииссиидиологии представляет собой один из бесчисленных вариантов «квантовых смещений», инерционно осуществившихся в фокусной динамике условного наблюдателя этого сллоогрентного (сингулярного, голографичного, одновременно-одномоментного) Акта.

Главной причиной открытого учёными «ускоренного расширения Вселенной» являются эгллеролифтивные (эволюционные) тенденции фокусных динамик форм самосознаний 3-4-мерного диапазона, которые сопровождаются увеличением энергоинформационных взаимосвязей. Общая фокусная динамика форм самосознаний нынешнего человечества, наращивая энергоинформационные взаимосвязи (в направлении спектра наиболее качественных выборов), последовательно вырывается из ограниченных возможностей квантово-волнового существования в фокусную динамику флаксовых форм самосознаний 4-5-мерного диапазона.

На смену традиционному всемирному тяготению приходит антитяготение , которое уже сейчас наблюдается в виде ускоренного расширения нашей вселенной и является показателем качественности - общая фокусная динамика человечества и других форм самосознания нашей вселенной последовательно переходит из квантово-волнового 3-4-мерного во флаксовый 4-5-мерный диапазон проявления форм самосознания.Причиной антитяготения является УПДИ с присущей ему универсальной космической энергией, в которую погружены все галактики и все вселенные. Энергия УПДИ - это потенциальная Энергия любого из осуществляемых взаимодействий, присущая самосознаниям форм в состоянии их абсолютной завершённости. Благодаря ей, через более качественные варианты фокусных динамик любых форм самосознаний, создаются абсолютно все эффекты: времени, пространства, гравитации, антигравитации и бесчисленного множества других, о которых мы с вами пока ничего не знаем.

Открытая астрономами «тёмная энергия» - это и есть энергия УПДИ, которая в каждой точке проявления так называемой «тёмной материи» представляет собой весь Творческий Потенциал Мироздания, все скрытые реализационные возможности, потенциально имеющиеся у любой из форм самосознаний.

Заключение

Итак, наша Вселенная на 95% состоит из чего-то, о чём мы почти ничего не знаем. Скрытая часть Вселенной, которую учёные назвали «тёмной материей» и «тёмной энергией», представляет собой энергоинформационные взаимосвязи между атомарными формами самосознаний, выходящие за пределы волнового 3-4-мерного диапазона нашей вселенной, то есть эти взаимосвязи принадлежат формам самосознаний 2-3-мерных и 4-5-мерных вселенных. Общая фокусная динамика форм самосознаний нынешних людей непрерывно обогащается новыми энергоинформационными взаимосвязями и тенденциозно смещается в субъективные реальности, которые структурируют 4-5-мерные вселенные.

Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались с помощью совершенно новых знаний и понятий, о которых человечество прежде не имело никакого представления. На данный момент таким новейшим знанием является ииссиидиология.

Список литературы:

    «Удивительная история черных дыр» Алексей Левин. «Популярная механика» №11, 2005. http://elementy.ru/lib/164648

    О.Орис. Основы Ииссиидиологии. Новейшие космологические представления о Вселенной и человеке. Том первый. Крым, 2013 год. http://www.ayfaar.org/iissiidiology/books

    О.Орис. Основы Ииссиидиологии. Новейшие космологические представления о Вселенной и человеке. Том второй. Крым, 2013 год.